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Abstract

This paper presents a two dimensional visual computer code developed to solve magnetohydrodynamic (MHD)

equations. This code runs on structured and unstructured triangles and operates by a fluctuation splitting (FS) scheme.

The FS scheme originally introduced by Roe [in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid

Dynamics II, Academic Press, New York, 1982] to solve Euler equations was extended by Aslan [J. Comput. Phys. 153

(1999) 437] for solving ideal MHD equations. Aslan’s method included a wave model, called MHD-A, consisting of

slow and fast magneto-acoustic waves as well as an entropy and artificial magnetic monopole wave. In this work,

Aslan’s method was extended to include external sources, a new sonic fix, and a careful normalization in the Euler limit.

It is shown by numerical experiments that VIS-MHD-A is able to work accurately for a wide range of problems in-

cluding discontinuities, shock structures, and problems including smooth solutions (e.g., Rayleigh–Taylor and Kelvin–

Helmholtz instability).

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Over the last few decades, the computational fluid dynamics (CFD) has offered numerous tools to

scientists and engineers. It has played a major role in the design of complicated space vehicles, complex
industrial machinery, safer nuclear plants, etc. CFD has also been an increasingly employed tool in a

variety of fields such as nonlinear wave propagation, turbulence, aeroelastic interactions, and plasma in-

teractions. High resolution numerical techniques in CFD are also being developed by plasma physicists to

analyze astrophysical, fusion, and laboratory plasma flows all consisting of single or multispecies gases. In

order to analyze such complicated systems in detail, it is better to visually follow the time (or iteration)

evolution of the numerical solutions obtained by these schemes. The scientific visualization not only allows

the investigator to follow the physical quantities in time but it also helps to determine the numerical in-

consistencies near boundaries, discontinuities, stagnation points, etc., during the code development. In this
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work, the detailed features of a new computer code (VIS-MHD-A) that works for challenging CFD

problems are presented along with its user-friendly visualization capability. The efficient normalization of

wave model, MHD-A in pure hydrodynamics (HD) limit (with vanishing magnetic field) and a new sonic fix
that eliminates unphysical expansion shocks (based on the correct sonic gradient idea introduced in [3]) are

the new features of this wave model. In addition, the new scheme is able to run under the effects of external

fields, including gravitational field. This new version of the computer code called VIS-MHD-A also in-

cludes a user-friendly visualization capability to provide an interactive usage for educational or parallel

processing purposes [4]. All the plots presented in this work were obtained by taking screen snapshots

produced by this code. This new robust and accurate code allows a thorough investigation of steady or

transient solutions of two dimensional HD or MHD equations on structured or unstructured triangular

meshes.
2. The MHD equations

The set of two dimensional (o=oz � 0, Bz ¼ 0, Vz ¼ 0) planar MHD equations in Cartesian geometry is

given by the following conservative form:

oU

ot
þ o

ox
½FðUÞ� þ o

oy
½GðUÞ� ¼ S; ð1Þ

where S is the source including external as well as artificial monopole and sonic sources (Section 2.4) and

U ¼ ðq; qVx; qVy ;Bx;By ;EÞT is the conservative state vector of fluid variables (with q: density, qV: mo-

mentum, B: magnetic field strength, and E: total energy). The system of MHD equations is completed by

the following equation of state:

P ¼ ðc� 1Þ E
�

� 1

2
qV 2 � B2

8p

�
; ð2Þ

providing a frequently used thermodynamics relation to determine pressure. The vectors F and G in Eq. (1)

are inviscid fluxes given by

F ¼

qVx
P � þ qV 2

x � B2
x=4p

qVxVy � BxBy=4p
0

VxBy � BxVy
qVxðE þ P �Þ � ðB � VÞ Bx

4p

2
6666664

3
7777775
; G ¼

qVy
qVxVy � BxBy=4p
P � þ qV 2

y � B2
y=4p

VyBx � ByVx
0

qVyðE þ P �Þ � ðB � VÞ By

4p

2
6666664

3
7777775
; ð3Þ

where P � ¼ P þ B2=8p is total pressure.

2.1. Quasilinear form and parameter state

The conservative form in Eq. (1) can be transformed into the following quasi-linear form (for clarity,

assume S ¼ 0):

oU

ot
þ AðUÞ oU

ox
þ BðUÞ oU

oy
¼ 0 ð4Þ

provided that the linearized Jacobians (i.e., A ¼ oF=oU and B ¼ oG=oU) are defined in terms of an ap-

propriate average state, U. Since it is this quasi-linear form of the system of equations used by FS schemes,
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the fluxes which are used in finite volume schemes are not estimated. See [32] for a comparison between the

fluctuation splitting and finite volume schemes. Although it is not necessary to work in conservative

variables in the derivation of the eigensystem of wave models in the FS schemes (see [25], for example), the
flow variables (which are updated) are conservative variables in order to obtain correct weak solutions. The

hyperbolic nature of this system gives rise to the following conservative matrix:

Cn ¼ Anx þ Bny ; ð5Þ

which has real eigenvalues and a complete set of left and right eigenvectors for the vector,~n ¼ nxêx þ nyêy ,
that specifies the direction in which the disturbance in a physical quantity propagates as a wave.

In the FS scheme considered here, the values of physical quantities are stored at the vertices of a tri-

angular mesh T whose area is ST . During the time iterations, the resulting flux integral (or mesh fluctuation,

UT ) is computed and distributed to the vertices of these meshes by means of an upwinding strategy. Since

the MHD equations cannot be diagonalized, an approximate diagonalization method or so-called multi-
dimensional wave model (see [6] for a review of Eulerian wave models) is used to specify such a distribution.

The wave model allows the separation of mesh fluctuation into smaller parts (i.e., Uj
T associated with jth

wave) in the mesh. Individual distribution of these wave fluctuations to the nodes is performed in such a

way that overall conservation is retained (i.e., the relation UT ¼
P

j U
j
T is always satisfied).

The time rate of the state vector U can be found by integrating Eq. (1) over the phase space i.e., tri-

angular prism with a volume of DtST (where Dt ¼ tnþ1 � tn is time step)Z tnþ1

tn

Z Z
T

oU

ot
dS dt ¼ �

Z tnþ1

tn

Z Z
T
ðFx þGyÞ dS dt ¼ U�

T ; ð6aÞ

¼ � Dt
Z Z

T
A dS

� �
Ux

�
þ

Z Z
T
B dS

� �
Uy

��
; ð6bÞ

where the update is explicit whenUT is evaluated at old time level (i.e., � ! n) or implicit when it is found at

tnþ1. Because implementing implicit algorithms for unstructured triangular meshes is complicated, a mul-

tistage Runga–Kutta (RK) scheme is utilized in order to improve time accuracy [5]. Since it is unnecessary

to stick with U to carry out the above spatial integrations, a parameter state vector, Z, that is assumed to
vary linearly over the mesh is utilized. The form of it can be determined (analytically) by requiring the

elements of U, F, and G to be quadratic in their components of Z. In this case, the resulting Jacobians

Uz ¼ oU=oZ, Az ¼ oF=oZ, Bz ¼ oG=oZ will all be linear in terms of Z so that the area integrals will be

realized by its mesh average: Z ¼ ðZ1 þ Z2 þ Z3Þ=3. When this procedure is followed, it can be found that

such a parameter vector exists for the Euler system and is given by Z ¼ ffiffiffi
q

p ð1; Vx; Vy ;HÞT where H is the

enthalpy (see [2]). It is important to note that the use of this parameter state vector provides the Rankine–

Hugoniot (RH) relations

Fx þGy � ½AðZÞ;BðZÞ� � ðUx;UyÞ ð7Þ

to be satisfied over the triangular mesh.

Because of nonlinearity, it is impossible to derive such a parameter state for MHD so that some ap-
propriate forms such as

Z ¼ ffiffiffi
q

p
1; Vx; Vy ;

Bxffiffiffi
q

p ;
Byffiffiffi
q

p ;H
� �T

or Z ¼ ffiffiffi
q

p ð1; Vx; Vy ;Bx;By ;H �ÞT ð8Þ

(where H � ¼ ðE þ P �Þ=q) can be used as demonstrated in [2]. In this work, the second option was con-

sidered. Although the exact solution of Z provides the discontinuity capture within one cell, using ap-

proximate parameter vectors causes the discontinuities to spread into a few cells. As it will be shown by
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numerical results, the disadvantage of using an approximate parameter vector shows itself only in slightly

spread contact discontinuities.

Using the property that Z is linear and hence its gradient, ~rZ, is constant over T , the flux integral (or
fluctuation) defined by Eq. (6b) becomesZ Z

T

Unþ1 �Un

Dt

� �
dS ¼ U�

T ¼ �
Z Z

T
ðAUx þ BUyÞ� dS; ð9aÞ

¼ �
Z Z

T
ðAêx

�
þ BêyÞUz dS

��
� ~rZ�; ð9bÞ

¼ � ST AzðZÞ;BzðZÞ
� �

� ~rZ�: ð9cÞ

Note that since Az and Bz are linear in Z, the following identities (with j being the nodes of T ) were used in

obtaining:

1

St

Z Z
T
ðAz;BzÞ dS ¼ 1

3

X3
j¼1

AzðZjÞ;
1

3

X3
j¼1

BzðZjÞ
" #

¼ AzðZÞ;BzðZÞ
� �

: ð10Þ

Thus, the fluctuation in Eq. (9a)–(9c) becomes

U�
T ¼ �ST AðZÞêx

h
þ BðZÞêy

i�
� ~rU�: ð11Þ

This shows that the matrix: Cn is evaluated in terms of Z and that the average gradient: ~rU is found from
~rU ¼ UzðZÞ~rZ.

In the FS schemes, the total fluctuation (or the flux integral) in Eq. (11) is computed by the sum of the

fluctuations due to the simple waves, whose physical properties are obtained analytically from Cn. The

hyperbolic nature of the problem requires that the disturbances in density, momenta, and magnetic field

convect by the nonlinear interaction of the waves propagating in the system. The gradients in flow

quantities produced by these disturbances remain unchanged between the characteristic cones centered

around the time axis, and they jump to different values as the surfaces of these cones (along which indi-

vidual waves propagate) are crossed. This means that the gradient (i.e., x and y derivatives) of state vari-

ables can be projected onto a total of N right eigenvectors of CnðZÞ

~rU ¼
XN
j¼1

~rUj; ~rUj ¼ ajr
j
n~n

j; ð12Þ

where aj is called the strength of jth wave and rjn is its eigenvector. Using this result in Eq. (11), the total

fluctuation can be written as the the sum of wave fluctuations

UT ¼
XN
j¼1

Uj
T ; ð13Þ

where the wave fluctuation is given as

Uj
T ¼ � ST AUx

�
þ BUy

�j ¼ �ST ðAêx
h

þ BêyÞj � ~rUj
i
; ð14aÞ

¼ � ST ½ajðAnx þ BnyÞrjn � ¼ �ST ½ajCnðZÞrjn �; ð14bÞ
¼ � ST½ajkjnrjn� ð14cÞ

provided that kjn , satisfies the eigenvalue problem: Cnr
j
n ¼ kjnr

j
n .
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Notice that since all elements of Cn are evaluated in terms of Z, its eigensystem will be dependent on Z

while the wave-strengths and directions will be dependent on Z and its gradient. Because this dependency is

nonlinear, the differences in the form of Z as given in Eq. (8) will not cause significant changes in the
numerical solutions (this is indeed verified by various numerical results).

Using the wave fluctuation given in Eq. (14c), and employing mass lumping (i.e.,R R
dS ¼

P
T2i ST=3 ¼ Si) the conservative time update of Ui located at the node i of T at the new time level

nþ 1 becomes

Unþ1
i ¼ Un

i þ
Dtn

Si

X
T2i

XN
j¼1

Di
T ;jU

j�

T

"
þ ST

3
SðZÞ

#
; ð15Þ

where Si is median dual cell area around vertex i, Di
T ;j is the fraction of this fluctuation sent to node i in an

upwind manner, and Dt is the time step satisfying the positivity constraint (i.e.,

Dt ¼ rminðDx;DyÞ=ðj~vj þ UFÞ), with r, the CFL number.
2.2. Primitive form and wave model

The conservative fluctuation in Eq. (14c) is easily obtained by first writing MHD equations in terms of
the primitive state, W ¼ ½q; Vx; Vy ;Bx;By ; P �T:

oW

ot
þ AwðZÞWx þ BwðZÞWy ¼ 0; ð16Þ

then finding the eigenvectors: rjw of Cw ¼ AwðZÞnx þ BwðZÞny, and finally using rj � Uwr
j
w where

UwðZÞ ¼ oU=oW is the transformation matrix which satisfies ½Aw;Bw� ¼ U�1
w ½A;B�Uw. If the simple wave

solution Wðx; y; tÞ ¼ Wðxnx þ yny � ktÞ is inserted in Eq. (16), one gets ðAwnx þ Bwny � kIÞdW ¼ 0 stating

that dW is an eigenvector of the matrix Cw ¼ Awnx þ Bwny associated with the wave moving in the direction
~n ¼ ðnx; nyÞ. This allows the following projection:

~rW ¼
XN
j¼1

ajr
j
w~n

j ð17Þ

which can be used to derive the wavestrengths provided that x and y derivatives of W is known on T . The
primitive matrix Cw for the planar MHD system considered in this work is the same as given in [2]. The

eigenvalues of this matrix are given by

Kw ¼ Vn; Vn; Vn � US; Vn þ US; Vn � UF; Vn þ UF; ð18Þ

where the first two represent the eigenvalues of entropy and artificial monopole waves and Vn � US and

Vn � UF represent the eigenvalues of the slow and fast magneto-acoustic waves, respectively. The slow and

fast magneto-acoustic speeds are given by

US=F ¼ 1

2
a2
""

þ B2

4pq
� ða2
�

þ B2

4pq
Þ2 � 4a2

B2
n

4pq

�1=2##1=2
;

where a2 ¼ cP=q is the square of the sound speed.
The primitive eigenvectors of Cw are given (in the same order of Kw) as the columns of the following

matrix:
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Rw ¼

1 0 q q q q
0 0 �r2S r2S �r2F r2F
0 0 �r3S r3S �r3F r3F
0 nx r4Sny r4Sny r4Fny r4Fny
0 ny �r4Snx �r4Snx �r4Fnx �r4Fnx
0 0 qa2 qa2 qa2 qa2

2
6666664

3
7777775
; ð19Þ

where

r2S=F ¼ ½ByUS=F � fF=S sin h�=B?; r3S=F ¼ ½�BxUS=F þ fF=S cos h�=B?;
r4S=F ¼ 4pq
B?

ðU 2
F=S �

B2

4pq
Þ; fF=S ¼

ffiffiffiffiffiffiffiffi
4pq

p
aUF=SsignðBnÞ ð20Þ

and B? ¼ nxBy � nyBx, the component of magnetic field perpendicular to ~n.
As it was explained in [2], considering a total of 12 waves where the first set of 6 corresponding to

the matrix Ch1
w ¼ Awnx1 þ Bwny1 and the second set corresponding to Ch2

w ¼ Awnx2 þ Bwny2, Eq. (17)

becomes

~rW ¼
X6
j¼1

ajh1r
j
h1
~njh1 þ

X12
j¼7

ajh2r
j
h2
~njh2 : ð21Þ

It can easily be seen from Eq. (21) that having 12 wave strengths and 2 different angles leads an overde-
termined system of equations since there exists six x derivatives and six y derivatives on its left-hand side. In

model MHD-A, the relation h2 ¼ h1 þ p=2 was chosen so that the extra magneto-acoustic waves would

propagate in perpendicular directions (this idea was used earlier by Rudgyard [6] who developed Eulerian

wave models). Thus, Eq. (21) becomes

~rW ¼ ðWx;WyÞ ¼
X6
j¼1

ajhr
j
h~n

j
h þ

X12
j¼7

ajhþp
2
rjhþp

2
~njhþp

2
; ð22Þ

where ~nh ¼ nxêx þ nyêy ¼ cos hêx þ sin hêy , ~nhþp
2
¼ � sin hêx þ cos hêy .

Reducing the number of waves (and hence removing excess dissipation) is possible by combining two

entropy (waves 1 and 7) and two monopole waves (waves 2 and 8) together. Allowing only two angles (he
for entropy and h for other waves) and a total of 10 wavestrengths will then lead to the required 12 degrees

of freedom. When these waves are combined, after some algebra one achieves the result

a1k1r1 þ a7k7r7 ¼ ð~rq� ~rP=a2Þ � V ¼ aekere; ð23Þ
a2k2r2 þ a8k8r8 ¼ amkmrm; ð24Þ

where ke ¼ Vx cos he þ Vy sin he, km ¼ Vx cos hþ Vy sin h, and re and rm are the eigenvectors located as the first

and second columns of Rw given in Eq. (19). Thus, the total primitive fluctuation with 10 effective waves

becomes

UT
w ¼ � ST ½Aw;Bw� � ~rW; ð25aÞ

¼ � ST a1ek
1
er

1
e

"
þ a2hk

2
hr

2
h þ

X6
j¼3

ajhk
j
hr

j
h þ

X10
j¼7

ajhþp
2
kjhþp

2
rjhþp

2

#
; ð25bÞ
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where the subscripts e and m denote entropy and monopole waves and the last two sums represent the

magneto-acoustic waves propagating in ~nh and ~nhþp
2
directions, respectively. Note that since the updated

variables are conservative ones, UT
w should be converted into the conservative fluctuation using

UT ¼ UwU
T
w.

When solved analytically, the decomposition in Eq. (25b) results in the following relations for the wave-

strengths (noting that the subscripts outside parenthesis denote the derivatives):

a1e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðqÞx � ðPÞx=a2�

2 þ ½ðqÞy � ðP Þy=a2�
2

q
; a2m ¼ r � B; ð26aÞ
a4S � a3S ¼
�US

2D
½~r � Vþ V ðhÞ� þ signðBnÞUF

D
XB? þ BV
a
ffiffiffiffiffiffiffiffi
4pq

p
� �

; ð26bÞ
a4S þ a3S ¼
B?

4pq
XB þ BðhÞ

2D

� �
� as

~rP �~nh
qa2

; ð26cÞ
a6F � a5F ¼ UF

2D
½~r � Vþ V ðhÞ� � signðBnÞUS

D
XB? þ BV
a
ffiffiffiffiffiffiffiffi
4pq

p
� �

; ð26dÞ
a6F þ a5F ¼ � B?

4pq
XB þ BðhÞ

2D

� �
þ af

~rP �~nh
qa2

; ð26eÞ

where X ¼ ðVyÞx � ðVxÞy is the vorticity and other parameters are defined by: D ¼ U 2
F � U 2

S and
BV ¼ ½ðBxðVÞx þ ByðVÞyÞ� �~nh, XB ¼ ðByÞx � ðBxÞy , af=s ¼ ðU 2

F=S � B2=4pqÞ=D, and

V ðhÞ ¼ sin 2h½ðVyÞx þ ðVxÞy � � cos 2h½ðVyÞy � ðVxÞx�;
BðhÞ ¼ sin 2h½ðBxÞx � ðByÞy � � cos 2h½ðBxÞy þ ðByÞx�:

Note that the wave-strengths of the last four magneto-acoustic waves can be found from Eqs. (26b)–(26e)

by interchanging ~nh by ~nhþp
2
(i.e., cos h by � sin h and sin h by cos h).

As it was shown in [2], the propagation direction of the entropy wave is the same as that of Euler system

(model A of [1]) and that of the magneto-acoustic waves are in the direction of maximum magnetic strain

tan he ¼
ðqÞy � ðP Þy=a2

ðqÞx � ðP Þx=a2
; tan 2h ¼

ðBxÞy þ ðByÞx
ðBxÞx � ðByÞy

: ð27Þ

It is interesting to observe that the magneto-acoustic angle is insensitive to velocity gradients, an important

case which requires special treatment in the Euler limit.

2.3. Euler limit

It is important to obtain the correct Euler limit when the magnetic field vanishes (i.e., B ! 0, so that
UF ! a, US ! 0, af ! 1, as ! 0). In this limit, the entropy system (k1, a1, and r1) remains the same,

magnetic monopole system vanishes and fast magneto-acoustic system turns into the two acoustic system of

Euler equations:
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k5;6 ¼ Vn � a; R5;6
w ¼ q;

�
� a cos h;� a sin h; 0; 0; qa2

�T
; ð28aÞ

a6F þ a5F ¼
~rP �~nh
qa2

; a6F � a5F ¼ 1

2a
½~r � Vþ V ðhÞ� ð28bÞ

moving with angle ~nh and k9;10, R9;10
w , and a10F � a9F moving with angle ~nhþp

2
. When forward and backward

slow magneto-acoustic waves for h and hþ p
2

are combined and one takes ½signðBnÞ=B?� ! 1=4,
½signðBnÞ=B?�hþp

2
! 0 in r2S, r3S and those for hþ p

2
given in Eq. (20), the shear wave of the Euler system is

obtained

R3
wa

3 þ R4
wa

4 þ R7
wa

7 þ R8
wa

8 ¼ X
2

0;½ � sin h; cos h; 0; 0; 0�T ¼ ashearRshear; ð29Þ

where X is the vorticity and the strength of the shear wave. Thus, these waves turn into the 6 waves of

model A of [1]. These results show that model MHD-A reduces identically to Roe’s model in the limit where

magnetic fields vanishes. The only problem with this limit is that the magneto-acoustic wave propagation
angle given in Eq. (27) does not include velocity gradients so that it is unable to reduce the Eulerian angle

tan 2h ¼
ðVyÞy � ðVxÞx
ðVyÞx þ ðVxÞy

ð30Þ

that was used in [1]. Although this angle can be activated in Euler limit by a suitable switching mechanism

or by a careful averaging of two angles comparing jVj with jBj=
ffiffiffiffiffiffiffiffi
4pq

p
, it is still an open question whether it

is possible to obtain a propagation angle which reduces identically to that given in Eq. (30). According to

the numerical experience of the author, such switching produces excellent results in Euler limit as will be

shown by numerical results.

Using the results obtained so far the conservative time update of U at the ith node of T can be written as

Unþ1
i ¼ Un

i �
Dtn

Si

X
T2i

ST
X10
j¼1

Di
T ;ja

j
hk

j
hr

j
h

"
� SðZÞ

3

#�
; ð31Þ

where the last term is the average source (i.e., external force, gravitational force, artificial sonic and

monopole sources) which is equally distributed to the vertices of each triangle and Di
T ;j are distribution

coefficients mentioned earlier.

The idea of upwinding is to assign the fluctuation due to the jth wave (Eq. (14c)) only to the nodes of T
towards which it is traveling. In order to select the upwind nodes, the signs of the following distribution
parameters are used

dj
i ¼ 1

2
~kji � n̂iLi; ð32Þ

where kj is the jth eigenvalue of Cn, n̂i are the inward normal vectors along the sides i whose lengths are Li.

The geometry requires that
P3

i¼1 n̂iLi ¼ 0 and hence
P3

i¼1 di ¼ 0 stating that the signs of di cannot be the
same. If the sign of dj

i is positive and those of others are negative, the node i is the upwind node. Therefore,

the fluctuation due to wave j, given by Eq. (14c), is assigned only to this node, resulting in the following

distribution coefficients:

Di
T ;j ¼ 1; Dj

T ;j; Dk
T ;j ¼ 0: ð33Þ

Otherwise, two nodes with positive distribution coefficients are upwind nodes for this wave and its fluc-

tuation is individually distributed between these nodes. In this work, two types of distribution strategy are

utilized (N and NN methods).
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Let us assume that the nodes i and j are upwind nodes for the two node update. The first method is called

positive and linearity preserving N scheme which produces narrowest discontinuities. In this scheme, the

wave fluctuation, Uj
T , is first decomposed into two components, i.e., Uj

T ð~k
jÞ ¼ Uj

i ð~k
j
i Þ þ Uj

j ð~k
j
j Þ since it is

linear in ~kj and then they are assigned to the nodes i and j, respectively. Notice that ~kji and ~kjj are the

projections of~kj along the sides across nodes i and j, respectively, see Fig. 1(a). These components are given

by ~kji ¼ Di
T ;j
~kj, ~kjj ¼ Dj

T ;j
~kj (with Di

T ;j þ Dj
T ;j ¼ 1) where

Di
T ;j ¼

ð~nh � n̂iLiÞð~nh �~rkjÞ
2ST

; Dj
T ;j ¼

ð~nh � n̂jLjÞð~nh �~rkiÞ
2ST

; Dk
T ;j ¼ 0; ð34Þ

where~rki=j are vectors pointing from vertex k to i=j. Thus, the fluctuation for these downwind nodes be-

comes

Uj
i ð~k

j
i Þ ¼ Di

T ;jU
j
T and Uj

j ð~k
j
j Þ ¼ Dj

T ;jU
j
T ð35Þ

so that the conservation requirement is satisfied.

The second method used in this work is called NN (nonlinear narrow) scheme which is the same as N

scheme except that the frontal speed in the distribution parameters is modified by: ~k� ¼~kþ~ks ¼~kþ cn̂s
where c ¼ �~k � n̂s and n̂s is the unit vector parallel to the isolines of U, see Fig. 1(b). This modification does

not alter the wave fluctuation since the unit vector in the gradient direction, n̂G ¼ ~rU=j~rUj, is perpen-
dicular to n̂s so that ~k� � ~rU ¼~k � ~rU. Thus, the distribution parameters for NN scheme become

dj
i ¼ 1

2
~k�i �~ni ¼

1

2
½ð~ki � n̂GÞn̂G� �~ni ¼

1

2
~kG �~ni: ð36Þ

Since NN scheme takes the gradients into consideration, it can detect unphysical expansion shocks and

mostly eliminate them as will be shown by numerical results.

With N or NN type distributions, the FS scheme described so far carries first order accuracy in space.

The spatial accuracy of this scheme can be increased to second order by means of limiters through the

nonlinear PSI scheme [6]. In PSI scheme, Uj
i and Uj

j which are given in Eq. (35) are modified as

U�
i ¼ Ui � LðUi;�UjÞ; U�

j ¼ Uj � LðUj;�UiÞ; ð37Þ

where Lðx; yÞ is Minmod limiter [7] given by

Lðx; yÞ ¼ 1

2
ðsignðxÞ þ signðyÞÞminðjxj; jyjÞ: ð38Þ
Fig. 1. The two node distribution of the fluctuation by N and NN methods.
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2.4. Sources and sonic fix

The right-hand side of Eq. (1) includes external sources (such as gravitational force) as well as
the artificial sources to cure problems associated with magnetic monopoles or unphysical expansion

shocks. The numerical divergence source (Sdiv) arises from inserting an artificial magnetic monopole

wave into the eigensystem in order to eliminate undesired effects of non-physical magnetic mono-

poles (see [2] for details). In the work presented here artificial monopole wave is kept in the ei-

gensystem but Sdiv is set to zero since its effects are negligible in comparison with the monopole

wave’s dissipation effects.

It is well known that most of the approximate Riemann solvers suffer from non-physical expansion

shocks at sonic points where one of the eigenvalues changes its sign and becomes small or vanishes. If
sonic points are not handled correctly, such algorithms may not converge to the entropy satisfying

solutions. Some methods to treat sonic points have been developed by several investigators (see [3] for a

review) and successful results had been obtained. In most of these sonic fixes, the eigenvalues are al-

lowed to pass through sonic points smoothly so that the dissipation at sonic points does not vanish and

that the second order accuracy is not reverted to the first order. Recently, the most striking sonic fixes

were developed by Roe [8] for the Euler equations and by Aslan and Kammash [3] for the MHD

equations. These authors realized that considering the rate of sonic gradients was the key issue for a

physically correct sonic treatment. Roe suggested that the state around the sonic interface should have
been modified to eliminate expansion shocks while Aslan showed that a pointwise dissipation which is

directly embedded into the interface fluxes also produces a correct sonic treatment. In this work,

Aslan’s sonic treatment [3] was modified and adapted to the described FS scheme. Since the nodal

update methodology of the FS schemes requires mesh averages and x and y derivatives of the state,

before the nodal updates take place, this existing information can be used to detect if a mesh is likely

to include a sonic point. If the magnitude of an eigenvalue nearly vanishes and it changes sign in any

one of the neighboring triangles, its gradient is maximized. When this phenomenon is observed the

associated mesh is flagged to include a sonic point. To get a correct sonic dissipation at this point, the
system of equations are expanded in time by a higher order Taylor polynomial (see [3] for details) and

the following second order sonic vector is obtained:
Ssonic ¼ �Dt
2
½ðAÞxðFÞx þ ðBÞyðGÞy � ð39Þ
to be equally distributed among the nodes of T as a regular source vector. Note that Ax and By are x and y
derivatives of the Jacobian matrices defined in [2]. How this vector is obtained at sonic points can be easily

understood if the procedure in [3] is followed for 2D. For example, it can be shown that Eq. (39) produces
the following form of the sonic source for the x momentum:
Ssonic
2;i ¼ �DtSi

2ST
ð3� cÞðVxÞx qV 2

 
þ P þ

B2
y � B2

x

8p

!
x

þOðDx3Þ ð40Þ
when the sonic interface is in the x direction. If this term is distributed equally among each node of T , the
artificial pointwise dissipation applied to x-momentum will fix the sonic problem. By comparison with the

results in [3] one can find that this term is related to the correct sonic gradient and that its magnitude decays

exponentially in time while the sonic fix is being performed (this was actually shown in [3] and re-observed

by the author).
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3. Visual implementation

The visual capability of VIS-MHD-A was established by using specially written visualization subrou-
tines (of Graphical-User-Interface, GUI) all of which are designed to work in parallel (as multi-threaded)

with the computations. This property allows us to analyze the features of the calculated quantities at any

time and on any spatial point in the solution domain (to obtain a demo version of this code see [9]). The

graphical interface was developed such that the code can be modified so that it can be run in parallel on a

network of workstations (see [4]). The user friendly code, VIS-MHD-A, was developed such that structured

meshes (for simple geometries) or unstructured meshes (for complex domains) can be produced and ap-

propriate boundary conditions can be specified interactively by the user before the simulation starts. In

addition, desired flow features (including color and vector graphics as well as PIC type motion trajectory)
and mesh structure can be visualized on the screen. During the time iterations, the GUI collects the nodal

values, evaluates averages, and converts them into 50 different colors for the high resolution color image

display. Only one set of vectoral quantities is stored on a typical mesh for vector graphics. The color and

vector graphics updates on the screen are carried out by GUI at a certain frequency specified by the user.

Although the data communication for graphical and the data processing by GUI causes a minor slowdown

during the iterations, it is not of practical importance since the graphing frequency is usually chosen to be

very low for time dependent problems. Since the graphs of the solutions are important only at the end of the

steady state iterations, GUI graphics are only utilized at the end of iterations and therefore cause no
corresponding slowdown. The vector graphics are used to visualize the online changes in the velocity and

magnetic fields and color graphics are used to visualize scalar quantities such as density, pressure, and

Mach number. In addition to the vector and color graphics options, the user can also analyze the solution

profiles along the horizontal and vertical directions meeting at a point created by left and right mouse
Fig. 2. A typical screen view displayed by GUI during a sample run.
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clicking. The creation of a structured/unstructured grids, the selection of solver type and test problems with

appropriate input parameters, and the intervention of graphical features are all user-friendly. Pausing the

runs to take the snapshots of the visual features, restarting and stopping the executions can all be done by
means of the GUI. Although the visual part of the code is continuously being improved, a typical page

running a sample test is shown in Fig. 2. The details of the visualization features of VIS-MHD-A can be

found in [10].
4. Numerical results

To test the validity of VIS-MHD-A described up to this point, some previously published one and two
dimensional test problems were solved on a variety of structured and unstructured meshes. The first set of

tests were carried out on highly elongated (in x direction) triangular grids to check the codes performance in

the one dimensional limit. The second set which were run on Cartesian grids of different size included two

dimensional tests which covered a wide range from subsonic to compressible flow regimes.

4.1. One dimensional tests

For a numerical method designed to investigate shock and discontinuity dynamics, it is necessary to test
its properties by initiating nonlinear waves arising from an initial discontinuity and following their prop-

agation. This can easily be established by checking if the code passes a variety of one or more dimensional

tests previously studied. In order to check the performance of VIS-MHD-A in one dimensional limit, a set

of test problems including shocks, contact discontinuities, rarefaction waves, and compound waves were

solved on a rectangular domain, ½0; 1�, covered by highly elongated (in x direction) 200, 800, 1600� 3 right

running diagonal triangles. To initiate the runs, the x-axis is divided into two equal halves on which left and

right states are defined to initiate different nonlinear MHD waves. The outgoing boundary conditions

(where the boundary nodes are untouched) were used on all boundaries and the results were obtained
before the fastest waves arrive at the left and right boundaries.

4.1.1. Test 1: Sod’s shock tube test (c ¼ 1:4)
This famous hydrodynamic test that was first introduced in [11] involves a left moving fast rarefaction

(FR)), a right moving contact discontinuity (CD+) and a fast shock (FS+). The initial data (with B ¼ 0)

were chosen as WL ¼ ½1; 0; 0; 0; 0; 1�, WR ¼ ½0:125; 0; 0; 0; 0:1� and the problem was run until t ¼ 0:411. The
resulting density and Vx profiles in x direction (as a function of different mesh sizes) are shown in Fig. 3. As

seen, the solution shows no post-shock oscillations and the contact and shock get sharper as the mesh
resolution is increased, see [12] for the comparison of this result with previous ones. This result shows that

model MHD-A reduces to the correct 1D limit as magnetic field vanishes. No efforts were taken to set

magnetic field and Vy to zero, although some negligible errors for these fields were observed near the shock

and contact. Note that these errors get smaller as the mesh is made finer.

4.1.2. Test 2: strong sonic test (c ¼ 5=3)
This test, first introduced in [13], was chosen to show how the new sonic fix (described in Section 2.4) and

the NN method are able to eliminate unphysical expansion shocks, a phenomenon from which most ap-
proximate Riemann solvers suffer. In this problem, the initial tangential field includes a jump but normal

field Bx is zero, i.e., W
L ¼ ½1; 0; 0; 0;

ffiffiffiffiffiffi
4p

p
; 1000�, WR ¼ ½0:125; 0; 0;�

ffiffiffiffiffiffi
4p

p
; 0:1�. The problem (which includes

and FR), CD+, FS+) was solved on a 400� 3 mesh with right running triangles and the resulting density

and Vx profiles in x direction at t ¼ 0:003 are shown in Fig. 4. This figure involves the solutions obtained

with no sonic fix, with new sonic fix, and with the NN distribution scheme. As seen, the sonic fix does its job



Fig. 3. Sod’s shock tube test at on t ¼ 0:411, 200, 800, 1600� 3 R-grid, c ¼ 1:4. Plots show FR), CD+, FS+ from left to right.
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and eliminates expansion shock while NN method automatically handles the sonic problem with no fix

required.
4.1.3. Test 3: slow shock and rarefaction test (c ¼ 5=3)
This test which can be found in [14] was chosen to see how sharp the slow shocks (SS) and how smooth

the slow rarefactions (SR) will be, and if there exists post-shock oscillations due to slowly moving shocks.

The initial data which includes a discontinuous tangential field are given by: WL ¼ ½1; 0; 0; 3; 5; 1�,
WR ¼ ½0:1; 0; 0; 3; 2; 10�. The resulting density, pressure, Vx, and By profiles at t ¼ 0:08 obtained on a 800� 3

grid are presented in Fig. 5. The solution includes FS), SR), CD), SR+, and FR+ from left to right. As

seen, there are no post-shock oscillations, but contact and slow shock are spread over about 10–15 cells.

This is expected since there is extra dissipation in the scheme (produced by extra waves added to the wave

model), the parameter state is approximate, and the slow shock is very weak. However, these discontinuities

become sharper when the mesh size is reduced.



Fig. 4. Strong sonic test at t ¼ 0:003, on 400� 3 grid, c ¼ 5=3. Plots show FR), CD+, FS+ from left to right.
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4.1.4. Test.4: switch-on shock problem (c ¼ 5=3)
This test that can be found in [14] was chosen to examine how the scheme described here deals with

switch-on fast shocks (SO-FS) behind which the tangential field turns on. The initial left and right state

values are given as

WL ¼ ½1; 0; 0;
ffiffiffiffiffiffi
4p

p
;
ffiffiffiffiffiffi
4p

p
; 1�; WR ¼ ½0:2; 0; 0;

ffiffiffiffiffiffi
4p

p
; 0; 0:1�:

The resulting profiles (at t ¼ 0:15) shown in Fig. 6 include FR), SR), CD+, SS+, and SO-FS+. As seen, the

tangential field turns on behind SO-FS+ successfully; however, there exists a small undershoot on the top of

the slow rarefaction wave. Yet also another observation is that although it is weaker, slow shock is sharper



Fig. 5. Slow shock and rarefaction test at t ¼ 0:03, 800� 3 grid, with c ¼ 5=3. Plots show FS), SS), CD), SR+, FR+ from left to

right.
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than the fast shock. This shows that the code treats equally to the slow and fast shocks in terms of their

sharpness determined by the strength of the shock. Note that these results agree very well with the results
presented in [14].

4.1.5. Test 5: compound wave test (c ¼ 5=3)
This test was first introduced in [15] and it involves compound waves (CW) originating from structures

involving a shock and the rarefaction of the same wave family moving together. The initial data are such

that the tangential magnetic field changes sign across the initial discontinuity

WL ¼ ½1; 0; 0; 0:75
ffiffiffiffiffiffi
4p

p
;
ffiffiffiffiffiffi
4p

p
; 1�; WR ¼ ½0:125; 0; 0; 0:75

ffiffiffiffiffiffi
4p

p
;�

ffiffiffiffiffiffi
4p

p
; 0:1�:

The resulting field profiles at t ¼ 0:1 obtained on a 800� 3 grid are presented in Fig. 7. The solution in-

cludes both left and right running fast rarefactions (FR), FR+), left running slow compound (SCW)), and
right running contact (CD+) and a slow shock (SS+) waves. The fact that VIS-MHD-A is able to solve this

test accurately is very interesting since the MHD equations considered here are planar (i.e., vz ¼ 0;Bz ¼ 0)

so that the Alfven wave is inexistent in the eigensystem, unlike the case in [15]. This shows that, although
the Alfven wave structure is not explicitly included in model MHD-A, the dissipation that are produced by

magneto-acoustic waves gives rise to this compound wave structure, resulting in correct physics.

All of the above one dimensional shock tube tests show agreement between the analytical solutions and

previously published results. The positions and strengths of the shocks, rarefactions, and contact discon-

tinuities are correct and there exists no post-shock oscillations. Further work can be done to steepen



Fig. 6. Switch on fast shock test, at t ¼ 0:15, 800� 3 grid, with c ¼ 5=3. Plots show FR), SR), CD+, SS+, SO-FS+ from left to right.
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contact discontinuities and slow shocks to improve the discontinuity capturing ability of the code VIS-

MHD-A.

4.2. Two dimensional tests

The excellent performance of the code for two dimensional tests will be shown in this section. These tests
were all performed on a Cartesian grid with isotropic triangles of different size. All the images of the

physical quantities presented were obtained by taking the colorful image snapshots of the screen of VIS-

MHD-A during the actual time iterations and saving them as colorful or gray scaled images. These tests

include steady and unsteady problems, which cover a wide range from subsonic to supersonic and hy-

personic flow regimes. In all of these tests, the CFL number was set to 0.4 and the problems were run by the

third order RK algorithm [5].

4.2.1. Test 1: MHD shock reflection test, Euler limit (Mach¼ 2.9)

This purely hydrodynamic test, with c ¼ 1:4, was performed on a rectangular domain of ½0; 3:6� � ½0; 1�
which was covered by isotropic triangular meshes involving 220� 60 nodes. See Fig. 8(a) for a typical

isotropic grid.

The left boundary was taken to be a supersonic inflow boundary (on which all state values were spec-

ified) and the upper boundary values were taken analytically to initialize a Mach¼ 2.9 flow with a reflected

shock from the lower boundary. On this boundary, reflection boundary condition was imposed (where only

Vy was forced to vanish and other state quantities were untouched) and the right boundary was considered

to be outgoing (nodal values untouched). The initial condition was chosen to be the same as the left



Fig. 7. Compound wave test, at t ¼ 0:1, 800� 3 grid, c ¼ 5=3. Plots show FR), CW), CD+, SS+, FR+ from left to right.

N. Aslan / Journal of Computational Physics 197 (2004) 1–27 17
boundary condition. The boundary conditions are given by Winit ¼ Wleft ¼ ½1; 2:9; 0; 0; 0; 1=c�,
Wupper ¼ ½1:7; 2:6193;�0:5063; 0; 0; 1:5282� so that the steady state solution is a 23� reflected supersonic

shock. This problem was run (using Euler angle in Eq. (30)) until the density residual dropped to 10�11.

During the runs, the magnetic fields were left untouched even though small deviations from zero were

observed near discontinuities. The resulting density image obtained at t ¼ 4 is shown in Fig. 8(b).

When the solutions for physical quantities were examined closely, it was found that the density, pressure,

Vx and Vy assume the values of 2.6843, 2.9343, 2.4024, 0.0008, respectively, past the reflected shock. These
results are in excellent agreement with the analytical results (i.e., 2.68732, 2.93413, 2.40148, 0) which were

given in [31]. This agreement shows that VIS-MHD-A is able to handle the 2D-Eulerian limit successfully

provided that the Eulerian angle given in Eq. (30) is utilized.
4.2.2. Test 2: MHD shock reflection test (Mach¼ 2.9)

This is the MHD version of Test 1 which was originally introduced by the author in [2]. The following

boundary conditions were used to produce a steady state reflected supersonic and subalfvenic shock

Winit ¼ Wleft ¼ ½1; 2:9; 0;
ffiffiffi
p

p
; 0; 1=c�, Wupper ¼ ½1:46; 2:717;�0:405; 2:424;�0:361; 1:223�: This problem was

run on different isotropic grids of 21� 5, 41� 11, 81� 21, 161� 41 on a rectangular domain of

½0; 4� � ½0; 1�. For these meshes, the maximum divergence errors were evaluated from

DIVmax ¼
X
mesh

j~r � Bj
 ! X

mesh

jBxjmin þ jBy jmin

Dxmax þ Dymax

 !�1

ð41Þ



Fig. 8. (a) A typical isotropic grid used in shock reflection tests. (b) Oblique shock reflection test: steady state density image on

isotropic 220� 60 grid, c ¼ 1:4.
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as done in [2,16] and they are plotted as a function of time in Fig. 9. As seen from Fig. 9, the maximum

divergence error is nearly halved as the mesh resolution is doubled and the errors tend to reduce in time.

These magnetic flux convergence results show that the artificial monopole wave in extended model MHD-A

is able to reduce the errors due to nonzero divergence of the magnetic fields. In order to show the grid

convergence in the solutions, the x-profiles of the density at y ¼ 0:5 were plotted in Fig. 9(b) as a function

of different grid sizes. The result is that the reflected shock is as sharp as the incident shock and shocks

converge to correct locations as the grid resolution is increased.

4.2.3. Test 3: Orszag–Tang vortex (Mach¼ 1)

This problem (with c ¼ 5=3) considers an astrophysical MHD vortex and serves as an excellent test to

check if the MHD models can successfully represent the evolution of turbulence, see [17,18]. The initial

velocity and magnetic fields are

V ¼ � sinð2pyÞêx þ sinð2pxÞêy ; B ¼ �
ffiffiffiffiffiffi
4p

p
sinð2pyÞêx þ

ffiffiffiffiffiffi
4p

p
sinð4pxÞêy

and initial density and pressure are 2.777 and 1.587, respectively. Thus, the plasma beta: b ¼ P0=B2
0=8p and

Mach number: M ¼ V0=
ffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q

p
assume the values of 10/3 and 1, respectively. This initial configuration

includes a central x-point at which the velocity and magnetic fields vanish. This problem was solved on a

variety of isotropic triangular meshes of ½0; 1� � ½0; 1� and periodic boundary conditions were used at all

boundaries in order to map the toroidal problem onto the Cartesian plane. The resulting snapshots of

density, pressure, magnetic pressure: B2=8p, and kinetic energy: ð1=2ÞqV 2 at t ¼ 3 obtained on a high



Fig. 9. (a) The time rate of maximum divergence error as a function of different grid sizes for author’s shock reflection test. (b) The

density profiles (at y ¼ 0:5) as a function of different grid sizes for author’s shock reflection test.
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resolution 255� 255 isotropic grid are shown in Fig. 10(a). The thermal pressure profile (with a cut at

y ¼ 1=3:23) was plotted at t ¼ 3:1 in Fig. 10(b) to study the convergence properties of the scheme and to

compare the results with those given in [18] in which a 192� 192 square mesh and a total variation di-

minishing flux corrected scheme were used. It is seen that as the mesh is made finer, the agreement with [18]

becomes excellent since the contacts and shocks are sharp and located correctly, and the dynamics of the x-

point at the center is preserved correctly. This result shows that VIS-MHD-A produces a correct decay of

the vortex system by its numerical viscosity and resistivity built in its wave model by means of a number of
wave dissipations.

4.2.4. Test 4: hypersonic shock–cloud interaction

This problem (which was first introduced in [19]) deals with the disruption of a superfast high density

circular cloud while passing by a strong shock. The problem was solved on a square Cartesian grid of ½0; 1�
with isotropic triangles of a total of 121� 121 nodes.

The strong shock was produced by considering different states (suitable with the RH conditions) on both

sides of the shock surface located at x ¼ 0:6. The states on the left and right side of initial discontinuity are
given as: WL ¼ ½3:86; 0; 0; 0; 2:18; 167:35�, WR ¼ ½1;�11:25; 0; 0; 0:56; 1�: The dense cloud with a radius of

0:15 centered at x ¼ 0:8, and y ¼ 0:5 on the right side was produced by taking 10 times greater density so



Fig. 10. (a) Orszag–Tang vortex test on 255� 255 grid, c ¼ 5=3. Plots show the images of density, pressure, magnetic pressure, B2=8p,
and kinetic energy, ð1=2ÞqV 2 at t ¼ 3. (b) The thermal pressure profile obtained at t ¼ 3:1 and at y ¼ 1=3:23 for 41� 41, 81� 81, and

191� 191 isotropic grids.
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that the cloud moves towards the shock surface with a speed of Mach¼ 28. It is noted that the initial

conditions used in this work are the same as those given in [19] except that no z fields are considered here.

The resulting density, pressure, plasma beta, b ¼ P=ðB2=8pÞ, and magnetic pressure images at t ¼ 0:06 are

shown in Fig. 11. As seen from this figure, the shock surface is bent and after passing the shock surface, the

circular shape of the cloud is destroyed (with a denser head region) and a high pressured bow shock is



Fig. 11. Hypersonic shock–cloud test on 120� 120 grid, c ¼ 5=3. Plots show the images of initial density, and the density, pressure,

and magnetic pressure, B2=8p at t ¼ 0:06.
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produced ahead. It is evident from this expected result that VIS-MHD-A is able to handle such high Mach
number flows including strong shocks.

4.2.5. Test 5: bow shock test

This problem represents a steady bow shock produced by a supersonic flow around a cylinder (see [20]

for a similar test) and it was chosen to represent the convergence properties of the scheme running on

unstructured meshes. Fig. 12 shows four different rectangular grids of ½0; 4� � ½0; 4� with a central circle

generated by the unstructured grid producing algorithm of VIS-MHD-A. The initial conditions were taken

as q ¼ 1, P ¼ 0:2, Vx ¼ 2, Bx ¼ 0:1
ffiffi
ð

p
4pÞ to produce supersonic and super Alfvenic flow around the circle.

The left inflow boundary was taken to be the same as initial conditions, the normal velocity around the

circle boundary was taken as zero, and the other boundaries were taken as free boundaries in order to allow

a free outflow.

As seen from Fig. 13, the divergence errors reduce by increased grid resolution and increased number of

nodes around the circle. This grid convergence study shows that the monopole source in the wave model

also works very well for unstructured meshes. The resulting density and pressure images obtained on the

high resolution grid (Fig. 12) are shown in Fig. 14. Although the solution presented in [20] includes the

domain in front of the circle, the solutions presented here includes the backward flow part in addition to
agreeing with the previous solution.



Fig. 12. Different unstructured meshes for the convergence study of bow shock test. The node numbers are 1028, 1129, 2161, 2908

from (a) to (d).

22 N. Aslan / Journal of Computational Physics 197 (2004) 1–27
4.2.6. Test 6: Rayleigh–Taylor instability

This 2D test is the Rayleigh–Taylor (RT) instability that occurs when a heavy fluid is supported by a

lighter fluid in a gravitational field. This instability (observed in supernova explosion, in accretion onto

magnetospheres of neutron stars, in laser fusion, and many other contexts) was studied analytically by

Chandrasekhar [21], and experimentally by other scientists, see [22] for a review. During the initial phase of

this instability, exponentially growing perturbations cause penetration of the heavy fluid into the lighter one

in a finger shape and the rising up of the lighter fluid. As the RT fingers grow, the relative motion between

the two fluids drives secondary Kelvin–Helmholtz (KH) instability, turning the tips of the fingers into a

mushroom shape,and eventually the fingers brake and the turbulent stage begins. Linearized theory sug-
gests that the horizontal magnetic field can suppress this instability. If the densities of heavy and light fluids

are given by qH and qL, the minimum critical value of this field to suppress RT instability is given by, see

[21]

Bcr
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pg=kðqH � qLÞ

p
cos h

; ð42Þ



Fig. 14. The density and pressure images for the bow shock test obtained on the unstructured mesh (of Fig. 12(d)) including 2908

nodes.

Fig. 13. The numerical error of r � B error convergence study for bow shock test.

N. Aslan / Journal of Computational Physics 197 (2004) 1–27 23
where g is the acceleration due to gravity, k is the wave number of the initial perturbation, and h is the angle
between the magnetic field and wave vector. In order to check the performance of the code for this problem,

a Cartesian isotropic grid of ½0; 4� � ½�3; 1� was taken and the initial interface between heavy and light fluids

was considered to be located at y ¼ 0. Initially, qH ¼ 20; qL ¼ 1; P ¼ 1; g ¼ 0:1 was taken (with c ¼ 1:4)
and the following velocity perturbations which drive four fingers were considered, see [23]

Vx ¼ 0:25 sinð2pxÞe�2pjyjð2Hy � 1Þ; Vy ¼ 0:25 cosð2pxÞe�2pjyj; ð43Þ

where Hy ¼ 1 for y > 0 and Hy ¼ 0 otherwise. When initial magnetic field is taken in x direction (i.e., h ¼ 0�
and k ¼ p=2) is considered, the critical magnetic field is found to be 2.757 from Eq. (42). Fig. 15 displays the

density contours at five different times as a function of the horizontal magnetic field strength. The columns

from left to right denote the times t ¼ 1 to t ¼ 5 and the rows from top to bottom denote increased hor-

izontal magnetic field strength: Bx ¼ 0:5, Bx ¼ 1, Bx ¼ 2, Bx ¼ 2:757, Bx ¼ 4, Bx ¼ 6, respectively. As seen

from the top figures in Fig. 15, the instability takes place for this weak magnetic field, the bubbles occur in



Fig. 15. RT Instability test density images at different times as a function of horizontal magnetic field strength. The values of Bx change

from top to bottom as 0.5, 1, 2, 2.757, 4, 6, respectively.
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heavy fluid between fingers, and finally mushroom type structures are produced at the tips. These results

show that the code is able to produce results agreeing with the theory in (almost) pure hydrodynamics limit.
When the strength of this magnetic field is increased, the growth of the fingers start to cease at Bx ¼ 2:757
and the interface is stabilized for stronger fields. Notice that in all cases, the interface moves downward very

slowly due to the weak gravitational force. These results agree very well with the theory as demonstrated.



Fig. 16. Kelvin–Helmholtz test on 100� 200 grid, c ¼ 1:4. Plots shows the images of density at t ¼ 0:4 and t ¼ 0:6.
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4.2.7. Test 7: Kelvin–Helmholtz (KH) instability

This problem was chosen to check if VIS-MHD-A can handle low Mach number, conducting shear flows

in the presence of magnetic fields. The flow was characterized by initial constant density (q ¼ 1), pressure
(P ¼ 50), horizontal magnetic field (Bx ¼ B0

ffiffiffiffiffiffi
4p

p
), a hyperbolic horizontal velocity: Vx ¼ V0 tanhð20yÞ, and a

perturbed perpendicular velocity: Vy ¼ 0:25 sinð2pxÞe�100y2 along with c ¼ 1:4. This problem was solved on

a Cartesian grid of x 2 ½0; 1�; y 2 ½�1; 1� with 101� 201 isotropic triangles with outgoing top and bottom

boundaries and periodic left and right boundaries. With this given form, the horizontal velocity (V0 at

y ¼ 1) changes sign across a shear surface located at y ¼ 0 and reaches �V0, resulting in maximum initial

change of 2V0. The instability will be suppressed only if this change is smaller than initial Alfven velocity

(i.e., UA ¼
ffiffiffiffiffiffiffiffiffiffi
B2
0=q

p
). Fig. 16 gives the density images at t ¼ 0:4 and t ¼ 0:6 for V0 ¼ 5, and B0 ¼ 1. As seen,

since the magnetic field is not sufficiently strong to suppress instability, a vortex (rotating clockwise)
emerges and mixes the fluids around the initial shear layer. This solution, which compares well with that

given in [24], shows that VIS-MHD-A again does an excellent job for such a subsonic shear flow.

All these two dimensional and one dimensional test results show that VIS-MHD-A can efficiently be

used for steady state or time dependent simulation of neutral and charged fluids from subsonic to hy-

personic flow regimes.
5. Conclusion

The purpose of developing VIS-MHD-A was to provide the plasma physics community with a robust,

accurate and user-friendly visual computer code to numerically solve two dimensional MHD flows. VIS-

MHD-A operates with a fluctuation splitting scheme originally developed by Aslan [2] for structured or

unstructured triangular meshes. This scheme includes a wave model, MHD-A, whose physical properties

are analytically obtained from the eigensystem of flux Jacobians. The code does not utilize fluxes, and does

not employ any dimensional or Strang-type splitting in time. Instead, it evaluates and distributes fluctu-

ations in the triangular cells by means of a compact (and conservative) second order scheme requiring no
information from neighbor cells. For such a distribution, first the propagation angles and the strengths of

the waves (originating from the hyperbolic nature of MHD equations) are determined in triangular cells.

Then, these waves are allowed to interact non-linearly in such a way that the shock-capturing property is
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established in an accurate manner. The code is able to utilize explicit time stepping or higher-order mul-

tistage Runga–Kutta algorithms [5]. The code was designed to solve the MHD equations along with a

possible external source such as external gravity, heat conduction, radiative cooling, etc. Since VIS-MHD-
A solves ideal MHD equations, the viscosity and resistivity are automatically built into the wave model in

order to produce numerical dissipation. The divergence condition in the magnetic field is handled by

convecting and dissipating the artificial monopole wave that is allowed to move with the flow. How to

handle the ~r � B constraint by means of such a monopole wave was first addressed by Aslan [12] in his

thesis and this idea was then used by Powell [26] to obtain rotated MHD problems in two dimensions. Since

then, many investigators have been following this idea, although some others have been preferring to use

constraint transport of Evans and Hawley [16] or projection scheme of Brackbill and Barnes [27], or the

vector potential formalism (see [33,34] for a review). Nevertheless, it was observed by this author during
numerous numerical examples that the monopole wave idea originally introduced by Aslan [12] works well

for transient and steady state MHD problems in the range from subsonic to supersonic (and hypersonic)

MHD flows (see [28,29]). An important feature of the code is its user-friendly visualization capability. With

this code, structured or unstructured grids can be created by specifying domain boundaries, the color

images of scalar quantities and vector plots of vectoral quantities can be displayed on screen, and a fast

PIC algorithm can be used to follow the trajectories of the particles. This code is currently being ex-

tended to include partially ionized multi-species hypersonic plasma flows and their associated instabilities,

see [30].
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